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APPENDIX

The computation of attenuation factors is lengthy
and complicated. For image lines which have dielectrics
with semicircular cross sections, the contributions to
attenuation due to dielectric loss (as) and conduction
loss (o) may be found from the following expressions:

$

oq = 27.3 <76) R decibels/meter (1)
RR’'

Q= 69‘5< N > decibels/meter (2)
n

where
P =loss tangent of the dielectric rod
e =relative dielectric constant of the rod
A =f{ree-space wavelength (meters)
7 = intrinsic impedance of free space
R, =surface resistivity of the image plane.
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The factors R and R’ are complicated {unctions ol the
dielectric constant and diameter (in free-space wave-
lengths) of the rod. Explicit expressions for R and R’
may be found in the paper by King and Schlesinger.?
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The Interaction of Microwaves with Gas-

Discharge Plasmas*
SANBORN C. BROWNT

Summary—The interaction of microwaves with gas-discharge
plasmas provides a valuable tool for studying the fundamentals of
gas-discharge phenomena and methods of controlling and switching
microwave power. A summary of our present state of knowledge in
this field is presented by using as particular examples the interaction
of high density and low density gas-discharge plasmas in S-band
resonant cavities, both in the presence and absence of dc magnetic
fields.

INTRODUCTION

HE effective dielectric coefficient of a plasma’ in
the absence of a magnetic field is given by

. 1)

Here w, is the plasma {requency given by the relation
w,?=me?/meo; w is the applied radian frequency, and »,
is the collision frequency of electrons in the gas given
by v, = (constant) ¢, where p is the pressure. The square
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root of the dielectric coefficient (1) is related to the at
tenuation and phase shift of a plane wave, as repre-
sented in Fig. 1. This figure is calculated for the specific
case of hydrogen gas at a microwave frequency of 4500
mc. In the low density region the attenuation and the
phase shift are linear functions of the density, but at
higher densities this linearity disappears and the func-
tional relation becomes more complicated. In the usual
use of microwave techniques for the diagnostic studies
of plasmas, a restriction is placed on the method by the
complexities of the solution in high density regions
where the linear dependence does not hold. Usually, the
microwave technique is restricted to the low density
region well below the plasma {requency at which
wy/w=1.

The solution shown in Fig. 1 is valid in the absence of
a magnetic field. If a magnetic field is applied, the di-
electric coefficient depends not only upon the density
and magnitude of the magnetic field, but also on the
geometrical configuration that is under consideration
and the direction of propagation of the electromagnetic
wave with respect to the magnetic field. Four cases can
be distinguished for the purpose of simplifying the dis-
cussion; they are given in the following equations.?

2 W. P. Allis, “Motions of lons and Electrons” in “Handbuch der
Physik,” Springer Verlag, Berlin, Ger., vol. 21, pp. 383-444; 1956.
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Fig. 1—Phase shift and attenuation of a plane wave
as a function of electron density.

Propagation along B Field

Right-handed circularly polarized plane wave:
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Left-handed circularly polarized plane wave:
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Propagation Perpendicular to B Freld
E field parallel to B:
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E field perpendicular to B:
2K.K 2 2 __ .2
| = l =1_wL_‘2.~_i_. (2d)
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Here the symbol w; refers to the cyclotron frequency
eB/m. In (2d) there is a component of E field along the
B field so that the E field is not divergenceless. In this
equation, also, the approximation is written in the ab-
sence of collision »,=0.

In a guiding structure such as a microwave cavity
the dielectric coefficient must be represented by one or
more of the coefficients mentioned above. As a result,
it is not possible, even at low electron densities, to ob-
tain a general theory in a form that is suitable for ex-
perimental verification and use in the microwave diag-
nostics of a magnetized plasma which is valid for all
possible configurations of the microwaves. Conse-
quently, only a few special configurations of the micro-
wave field are analyzed. The discussion is restricted to a
narrow cylindrical plasma column placed coaxially in a
cylindrical microwave cavity. The behavior of the
modes TMyy, TEo, and TMge or TM g is considered.
The static magnetic field, in all cases, is applied along
the axis of the cavity.
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TMu MopE (DEGENERATE MODES)
Low Electron Densities

When the measuring mode is degenerate in frequency,
the nonisotropic plasma removes the degeneracy. The
physical reason for this can be seen when the TMyy
mode is considered. When the radius of the plasma col-
umn is small compared with the cavity radius, the E
field of the TMi; mode can be considered as linearly
polarized in the plasma region. A linearly polarized
field can, in turn, be considered as composed of two
circularly polarized fields rotating in opposite directions.
As mentioned earlier, the refractive index of the plasma
is different for the two fields. As a result, the resonant
trequency of the cavity splits into two frequencies, and
the frequency shifts are given by?

_ o -
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(Af > N wyp* w /
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The subscript arrows denote the rotation of the E field
and the rotation of the electrons in the magnetic field.
Thus in the first equation the E field is rotating in the
same direction as the electrons; and in the second equa-
tion, the E field is considered as rotating in the opposite
direction from the electrons. The solution for this set of
equations is given graphically in Fig. 2. Also shown in
this figure is a diagram of the TM;j;; mode, in which the
electric field is represented by solid lines, and the plasma
on the axis of the cylindrical cavity is represented by a
shaded circle. The magnetic field is perpendicular to
the plane of the figure. Fig. 2 gives the solution of (3)
for the resonant-frequency shift as a function of electron
density with w,/w kept constant. If the equations for the
resonant frequency are solved as a function of the ratio
wp to w for a constant density, the result is as shown in
Fig. 3. It is obvious from this figure that for the case of
the electric field rotating in the same direction as the

electrons, the frequency shift is a complicated function
of the magnetic field applied to the plasma.

3)

High Electron Densities

When the electron densities are high, w,>w, the
relations for the frequency shift are invalid, mainly be-
cause the field in the plasma cannot be approximated
at high electron density by the field in the absence of a
plasma, the approximation which was made in the for-

3 J. C. Slater, “Microwave electronics,” Revs. Mod. Phys., vol. 18,
pp. 441-512; October, 1946.
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8 PO mmHg mode, namely, that the frequency shift is zero when
] wp? =w?+p,2 independent of the electron density. This
L ( Af) has been used as a direct measure of »,.
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¢ (T>6‘r vso The TEq mode is the mode that is ideally suited for
g3t (_ATL>Q measurement of high electron densities in the absence of
2 N 7 static magnetic fields,* because its azimuthal field does
(T’)@ not excite an ac space charge in an axially symmetric
; , . L plasma. In the presence of a static magnetic field, this
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Fig. 2—Resonant frequency shift as a function of electron density
for the TMyu; mode. The magnetic field is perpendicular to the
plane of the figure.
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Fig. 3—Frequency shift as a function of magnetic
field tor the TM;y; mode.

mer case. By far the most difficult problem is that of the
TMiy: mode. Here the field in the plasma is no longer
linearly polarized but, because the skin depths for the
left and right-handed rotating waves are different, the
field is elliptically polarized. The degree of ellipticity is
a function of the radius and of the density distribution.
The exact solutions to this problem therefore, have not
been attempted.

TEq: Mobpe (NONDEGENERATE MODES)
Low Electron Densities

In this case the perturbation theory can be extended
in a straightforward manner for taking into account the
presence of the static magnetic field. The dielectric
coefficient becomes a tensor. At low electron densities,
the field in the plasma can be approximated by the field
in the absence of the plasma, so that only one diagonal
component of the tensor needs to be considered. For
very low pressures, the frequency shift becomes

is no longer true. The nonisotropic nature of the plasma
causes radial currents and radial fields, which contribute
to the frequency shift. A first-order correction to the
perturbation formula can be obtained by using a pseudo-
static approximation, in order to compute the radial
microwave field in the plasma. Plots of the frequency
shift obtained are shown in Fig. 4, and they are com-
pared with the plot obtained from the sirnple perturba-
tion formula which neglects the radial fields. A striking
feature is the oscillation in Af/f. The magnitude of the
resonance becomes larger as the v, becomes smaller.

The behavior of the Q value of the cavity also can be
calculated as a function of the electron density. A cal-
culation of this sort leads to the results shown in Fig. 3,
where we see a resonance minimum in A(1/Q). In the vi-
cinity of the resonance, the Q value of the cavity is so
low that accurate measurements of Af/f are difficult to
obtain. A quantitative experimental verification has not
yvet been made, although a resonance in the Q value of
the cavity has been observed. Although we can predict
qualitatively the behavior of Af/f and A(1/Q) with the
electron density, we know that quantitatively our solu-
tions are not correct. This is so because the assumptions
about the field in the cavity, which were made in order
to derive the basic equations, are not compatible with
the nonisotropic nature of the plasma when the plasma
radius is not negligible compared with the wavelength.
It is well known that in a nonisotropic medium, a pure
TE mode is not possible. This is also true for the region
of the cavity outside the plasma. In the present case the
field in the cavity and in the plasma is some superposi-
tion of the fields of the TE; and the TMoy modes. An
exact solution of this problem is possible. It results in a
transcendental equation for the complex resonant fre-
quencies of the cavity which is in the form of a 6 X6 de-
terminant, and it must be computed by numerical
means.

TMomo (£ PARALLEL 1O B)
Low Densities

When the microwave mode is such that the E field is
parallel to the B field, the effective dielectric coefficient
4 8. J. Buchsbaum and S. C. Brown, “Microwave measurements

og hig1517electron densities,” Phys. Rev., vol. 106, pp. 196-199; April
15, 1957.
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Fig. 5—The Q value as a function of electron
density for the TEq mode.

is given by (2c). The frequency shift is independent of
the magnetic field in the limit of zero electron temper-
ature, and it is given by

vt | (3)
L

The solution of (5) for the frequency shift is given in
Fig. 6; the curve is marked “Perturbation Theory.”

ITigh Electron Densitics

Since the E field of these modes can be made to co-
incide with the direction of the static magnetic field, the
T'M g0 modes do not suffer from the disadvantages that
the nonisotropic nature of the plasma imposes on all
other modes that have a component of the E field at
right angles to the B field. Although the T M, are not as
ideal as the TEy: mode, they are well suited for measur-
ing high electron densities in those plasmas that do not
possess density gradients in the axial direction. The
disadvantage of the TMgno modes lies in the fact that
the shift in the resonant frequency of the cavity is large
when the plasma density is high. Consequently, the
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perturbation formula is again inadequate and exact
analysis must be resorted to. In this case, however, the
analysis is fairly straightforward. Fig. 6 shows the fre-
quency shift of a TMg, mode cavity as a function of
plasma density, which is assumed to be uniform, whose
radius is 7% of the cavity radius.

MEASUREMENT OF ELECTRON
DexsiTy DisTrieuvrion

Since the E fields of the three modes that have been
discussed have different radial and axial functional de-
pendences, the simultaneous use of two of the three
modes yields information abeut the electron density
distribution along the appropriate directions. The use
of the TMy;; mode, with E approximately constant with
R, and of the TE; mode, with E varying as R, yields
information about the density distribution along the
radius. The use of the TM 1y mode, with E varying as sin
(wg/L), and of the TMy, mode, with E approximately
constant with 3z, gives the distribution along the axis of
the plasma. These results are summarized in Fig. 7.



